Revolver: An Automated Approach to the Detection of Evasive Web-based Malware
نویسندگان
چکیده
In recent years, attacks targeting web browsers and their plugins have become a prevalent threat. Attackers deploy web pages that contain exploit code, typically written in HTML and JavaScript, and use them to compromise unsuspecting victims. Initially, static techniques, such as signature-based detection, were adequate to identify such attacks. The response from the attackers was to heavily obfuscate the attack code, rendering static techniques insufficient. This led to dynamic analysis systems that execute the JavaScript code included in web pages in order to expose malicious behavior. However, today we are facing a new reaction from the attackers: evasions. The latest attacks found in the wild incorporate code that detects the presence of dynamic analysis systems and try to avoid analysis and/or detection. In this paper, we present Revolver, a novel approach to automatically detect evasive behavior in malicious JavaScript. Revolver uses efficient techniques to identify similarities between a large number of JavaScript programs (despite their use of obfuscation techniques, such as packing, polymorphism, and dynamic code generation), and to automatically interpret their differences to detect evasions. More precisely, Revolver leverages the observation that two scripts that are similar should be classified in the same way by webmalware detectors (either both scripts are malicious or both scripts are benign); differences in the classification may indicate that one of the two scripts contains code designed to evade a detector tool. Using large-scale experiments, we show that Revolver is effective at automatically detecting evasion attempts in JavaScript, and its integration with existing web malware analysis systems can support the continuous improvement of detection techniques.
منابع مشابه
BareCloud: Bare-metal Analysis-based Evasive Malware Detection
The volume and the sophistication of malware are continuously increasing and evolving. Automated dynamic malware analysis is a widely-adopted approach for detecting malicious software. However, many recent malware samples try to evade detection by identifying the presence of the analysis environment itself, and refraining from performing malicious actions. Because of the sophistication of the t...
متن کاملAn automated approach to analysis and classification of Crypto-ransomwares’ family
There is no doubt that malicious programs are one of the permanent threats to computer systems. Malicious programs distract the normal process of computer systems to apply their roguish purposes. Meanwhile, there is also a type of malware known as the ransomware that limits victims to access their computer system either by encrypting the victimchr('39')s files or by locking the system. Despite ...
متن کاملFull System Emulation: Achieving Successful Automated Dynamic Analysis of Evasive Malware
Automated malware analysis systems (or sandboxes) are one of the latest weapons in the arsenal of security vendors. Such systems execute an unknown malware program in an instrumented environment and monitor their execution. While such systems have been used as part of the manual analysis process for a while, they are increasingly used as the core of automated detection processes. The advantage ...
متن کاملDyVSoR: dynamic malware detection based on extracting patterns from value sets of registers
To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013